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Summary

We ask the fundamental question of how well a position in natural space is defined by the

scene viewed from that position. We took panoramic snapshots in outdoor scenes at regular

intervals in two- or three-dimensional grids covering 1 m2 or 1 m3. We subsequently determined

how the root mean squared (r.m.s.) pixel differences between each of the images and a reference

image acquired at one of the locations in the grid develop over distance from the reference

position. We then asked, whether the reference position can be pinpointed from a random

starting position, by moving the panoramic imaging device in such a way that the image

differences relative to the reference image are minimized. 

We find that on time-scales of minutes to hours, outdoor locations in space are accurately

defined by a clear, sharp minimum in a smooth three-dimensional volume of image differences

(the 3D-difference function). 3D-difference functions depend on the spatial frequency content of

natural scenes and on the spatial layout of objects therein. They become steeper in the vicinity of

dominant objects. Their shape and smoothness, however, are affected by changes in illumination

and shadows. The difference functions generated by rotation are similar in shape to those

generated by translation, but their plateau values are higher. Rotational difference functions

change little with distance from the reference location. Simple gradient descent methods are

surprisingly successful in recovering a goal location, even if faced with large, transient changes

in illumination.

Our results show that view-based homing with panoramic images is in principle feasible in

natural environments, and does not require the identification of individual landmarks. We discuss

the relevance of our findings to the study of robot and insect homing.
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Introduction

The wealth of evidence showing that insects use view-based homing mechanisms has been

extensively reviewed over the last few years1-3. Based on this evidence, a number of models have

been proposed to explain how the comparison of a scene as viewed from a goal location with

scenes viewed from vantage points some distance away can be used to derive instructions on

how to return to the goal area (for a recent review see Ref. 4). Initially these models were tested

in computer simulations, but more and more attempts are being made to implement them on

mobile robotic platforms, with the aim of testing their performance in more realistic

environments. However, these environments are still largely restricted to indoor settings and the

question arises, how do view-based, insect-inspired navigation schemes perform under

biologically relevant conditions (for a rare example of outdoor robotic navigation using view-

based strategies see Ref. 5). To answer this question we need to know more about the natural

operating conditions navigating animals are confronted with, and eventually to have insect-

inspired robots operating in the field. We will only then be able to assess, whether the

information currently fed to model navigation systems is available, sufficient and reliable for

navigation in a visually noisy, cluttered, and time-varying natural environment.

Let us first briefly review the computational structure of the main models for view-based

homing with special emphasis on the visual cues used in the models4. As far as input

requirements are concerned, current models fall into two broad categories: models that require

extraction of some features and/or the identification of objects (landmarks) in a scene, and

models that neither require feature extraction nor the identification of landmarks. 

In most cases in which panoramic images have been used for view-based robot navigation6-

11, image information has been greatly reduced, mainly because this generates a noise-free
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pattern of signals in the indoor worlds of experimental robots where man-made structures and

artificial lighting produce clearly identifiable, and mostly vertical edges. 

Hong and colleagues6, for instance, used a one-dimensional strip of a panoramic image,

sampled along the horizon circle with 1o resolution and averaged over 5o degrees in elevation.

Landmark features, or ‘characteristic points’ were then extracted, by segmenting the image strip

into regions of monotonically increasing or decreasing intensity, by locating the intensity zero

crossings in these segments, and by subsequently selecting the 15 most conspicuous points by

ranking them according to the magnitude of intensity change within the segment. For the purpose

of navigation, a matching procedure based on correlation was employed.

Franz and colleagues9 also sampled a strip along the horizon with horizontal resolution of

4.6o and some averaging in elevation. The resulting one-dimensional array was low-pass filtered,

the background component was subtracted, and the contrast was finally maximised by histogram

equalisation. The authors then compare two homing schemes which differ in the assumptions

that are being made about the distance distribution of landmarks in a scene. One scheme is a

variant of the navigation procedure suggested by Hong et al.6 in which an average displacement

vector is calculated from the differences in angular positions of local features in the current view

compared to the reference view. In the second procedure, Franz et al.9 construct a matched filter

which predicts the displacement field of landmarks based on the assumption that objects are all

at the same distance. Views are then distorted according to this simplified displacement field and

are subsequently compared to the reference image using the dot product between the two images

as a measure of match. From this an estimate of the home direction is derived and used to guide a

robot platform. The latter procedure appears to improve performance slightly very close to the
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goal, compared to other view-based homing schemes10-13 which implicitly (and realistically)

assume that the distances of objects are distributed independently of viewing direction.

Lambrinos and colleagues10 and Möller11 also reduced image information significantly when

testing landmark guidance by their robots. They were able to threshold the image, because it

basically contained only high-contrast artificial landmarks. They then extracted a horizontal

panoramic strip from it, and finally arrived at a 1 pixel wide segmented horizon which was used

as a template for image-matching, or for generating an average landmark vector, which is more

parsimonious computationally but performs just as well as the image-matching procedures

proposed previously.  

In contrast to the models described above, Lehrer and Bianco14 and Gaussier et al.15

extracted selected image regions and used correlation techniques to find best matches for local

features or ‘landmarks’. The correlation coefficients then serve to determine which image

regions offer the most reliable cues for the landmark guidance of their robots.

It is important to note that all the models we briefly summarized above where either tested in

computer simulations (e.g. Refs. 12-13), with robots in laboratory environments without deep

depth structure (e.g. Refs. 6,9,11,14,15; for a selective review see Ref. 4), or with robots

operating in featureless environments, like a salt-pan desert in which artificial, high-contrast, and

sparse landmarks were conveniently placed10. There are at least two reasons why it is difficult at

present to assess how these homing mechanisms, which have ‘evolved’ in artificial worlds would

perform under the normal natural conditions in which animals typically operate. First of all, most

natural scenes are much more cluttered in texture, colour, luminance contrast, and depth

compared to indoor scenes. These properties may either be advantageous for view-based homing

mechanisms because visual information content is higher, or conversely may add an amount of
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visual noise, which the current homing schemes may not be able to tolerate. It may be difficult to

extract useful high-contrast features from natural scenes by applying a threshold and their deep

depth structure introduces large discontinuities in parallax and generates occlusions, which are

likely to cause problems for image matching schemes that rely on information derived from low-

level image processing. Natural scenes are in addition subject to large temporal variations of

luminance, of the direction of illumination, of shadow contours, and of background motion,

which together will have the effect of dramatically changing the appearance of a scene,

especially over time-scales of hours.

We attempt here to approach this problem, not by testing specific models under more natural

conditions, but by asking a fundamental question which is relevant to all the models proposed so

far: how well is a location in space defined by the surrounding scene as viewed from that

location? Or to state the question more accurately, how different is the visual world when viewed

from neighbouring vantage points, is this difference correlated with, and does it vary smoothly

with physical distance? Our approach is inspired by the image interpolation technique developed

by Srinivasan7 and Chahl and Srinivasan8, who have shown that over small distances and for

small angles of rotation, the position and orientation of an image can be determined by

interpolation from reference images taken at two different locations. The technique has been

successfully used to measure egomotion, range and surface orientation7,8,16-19 in simulated and in

indoor environments. We apply a simple variant of the technique here to analyse the principal

constraints of view-based homing in outdoor scenes by studying how global image differences

develop with distance from a reference position. The resulting spatial difference functions can be

understood as defining the ‘catchment area’ (sensu Cartwright and Collett13) of view-based

homing schemes that operate on global image differences.



7

Materials and methods

We used a custom-designed 3D-positioning platform which is mounted on a trolley (robotic

gantry, Fig. 1a) to move a panoramic imaging device20 (Fig. 1b) outdoors into accurately defined

positions in space. The robotic gantry consists of three perpendicular axes (horizontal x- and y-

axis and a vertical z-axis) the movements of which are controlled by servo motors (components

from Isel, Germany). The gantry can service an area of one cubic metre with a positioning

accuracy of 0.01 cm. We did not implement rotational degrees of freedom for the panoramic

imaging device, since yaw-axis rotations, which are most relevant for the questions we ask here,

can more conveniently be simulated by software rotation of the panoramic images. During

experiments, the gantry was levelled by adjusting heavy-duty set screws on the frame of the

trolley. We took care to choose sites for our analysis in such a way that the panoramic images

contained as few artificial structures as possible. A small cardboard screen prevented direct

sunlight falling on the reflective cone. Panoramic images were recorded with a black and white

or a colour CCD camera (Samsung BW-410CA, JVC TK860E) the gain control of which was

switched off. They were digitised to 768x576 pixels at 8 bit resolution by a frame grabber and

stored directly on the hard disk of a computer for analysis. We used panoramic imaging surfaces

with a vertical field of view of 120° to 150°, which were seen by about 260000 pixels in a

circular area at the centre of the rectangular video image. The panoramic images therefore were

sampled with an average resolution of 0.2˚, decreasing with elevation from below the horizon to

the zenith. The root mean squared (r.m.s.) differences in pixel values were determined off-line

between images after a mask had been applied to remove the image regions outside the reflecting

cone and in most cases also those containing dominant gantry and camera structures (Fig. 1c and
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d). Fig. 1e shows an unfolded version of the image in Fig. 1c, with the image of the camera lens

removed. 

The r.m.s. pixel differences between images in any one scene and at any one time are

determined by the specific scene composition, by the overall contrast and by the intensity of

incident illumination. To derive an estimate of the maximum difference that can be expected for

a given scene, apart from differences caused by changing the viewpoint of the imaging device or

the orientation of a snapshot, we first selected an image, which in most cases was the reference

image at the centre of a grid. By using the same distribution of pixel values in this image, we

then created a second image, in which the location of these pixel values was randomised. We

finally calculated the r.m.s. pixel difference between the original image and its randomised self

to arrive at an estimate of the maximal image difference (maxrms) for that particular scene after

all spatial correlation has been removed. The values of  maxrms  in our images ranged from 22

(Fig. 6c) to 102 (Fig. 9a) with a mean of 59.38 � 15.57std.

Further details of the analysis and of the gradient descent experiments are explained in the

text.

Results

The catchment areas of panoramic snapshots

We initially positioned the gantry in an area, which was enclosed by low bushes standing in

front of a group of larger trees (Fig. 1e). We recorded snapshots in a cube of 0.7 m side length

with grid points spaced at 10 cm intervals (white dots in Fig. 2a). Recording one horizontal grid

plane took about two minutes. The process started from a position close to the left base of the

gantry (Fig. 2b) and proceeded along transects parallel to its x-axis to end at the furthest reach of
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the gantry’s x- and y-axes on the right. The lowest grid plane was approximately 30 cm above

ground, which was covered with irregular patches of grass. After applying a mask to the images

(see Fig.  1d), we calculated the r.m.s. pixel differences between each of the images and a

reference image recorded at the centre of the cube. This procedure provides us with a difference

value for each location in the grid. The difference values for the lowest plane of the three-

dimensional grid are shown in Fig. 2c as a function of their spatial position in the grid. We call

this distribution of difference values the two-dimensional difference function for this particular

snapshot location. Fig. 2d shows horizontal transects through the difference function in Fig. 2c,

along the x-direction (full grey dots), the y-direction (full black dots), and along the two

diagonals (open grey and black dots) as indicated by arrows and symbols in Fig. 2b. Note that

the image differences increase smoothly with distance from the reference position and that the

difference function has not levelled out at the edges of the recording grid. Since the images were

recorded sequentially, there is the possibility that some of these differences are caused by

changes in illumination. We took care to find stable illumination conditions for our recordings,

but as we will show later, r.m.s. pixel differences did increase slowly with changes in the

direction of illumination. Such temporal effects would lead to consistently larger r.m.s.

difference values along the y-transect (black dots, Fig. 2d), compared to the x-transect through

difference functions (grey dots, Fig. 2d), because the images along the y-transect were taken at

time intervals that were seven times larger than those along the x-transect (cf. Fig. 2b). Although

we do see these systematic differences in this case and in many others we will discuss later, they

are nearly always restricted to the half of the grid which is closest to the gantry (see Fig. 2d).

This suggests that systematic temporal effects on r.m.s. pixel differences are negligible compared

to spatial effects, at least for the time it takes to record a single two-dimensional grid. 
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The 2D difference functions for snapshots at different heights above ground have very

similar shapes and dimensions (Fig. 3a), most probably because this particular location had a

densely cluttered depth structure in all directions. To investigate the vertical extent of the

3D difference function, we calculated the differences between the reference image RI at x = 0 m,

y = 0 m, z = 0.3 m and the images recorded in horizontal grid planes at 0.3 m, 0.4 m, 0.5 m, and

0.6 m height above ground (Fig. 3b). Clearly, image differences also vary smoothly with vertical

distance from the reference location and the 2D difference functions, although loosing their

distinct cusp shape, still possess a detectable minimum up to 20 cm above the reference location.  

As a first result we thus note that there is a smooth three-dimensional volume of image

differences with a clear minimum at the location where the reference image was recorded, at

least over a time-scale of minutes. The shape of horizontal or vertical sections through the centre

of this volume is cusped and the image differences have not reached their maximal values at the

edges of the recording area. This suggests that the distance at which the slope of the difference

function for this particular location could first be detected - that is the size of the catchment area

as it was defined by Cartwright and Collett12,13 – is larger than the distance between the reference

position and the borders of the recording area (30-50 cm in this particular case).

To discover whether and where these difference functions level out, we recorded at a

different, more open location images at 10 cm intervals in a horizontal plane of 1 m x 3 m side

length by moving the gantry one meter sideways after each 1 m x 1 m grid was recorded. The

resulting difference functions are shown in Fig. 4. For this more open place, the difference

function levels out at distances beyond one meter from the location at which the reference image

was taken. Note that the difference functions for two different reference locations in the same
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scene are quite similar in shape (compare Fig. 4a and b). They are both smooth, they lack

pronounced local minima and reach approximately the same values for a given distance from the

reference location. We ask next, what determines the size and the shape of difference functions

in outdoor scenes and how robust the gradients of image differences are against changes in

illumination and the movements of wind driven vegetation. 

The dependence of difference functions on location and spatial layout

We first wanted to investigate, how invariant these properties of difference functions are and

how much they are influenced by the specific spatial layout of a scene. We repeated the

measurements described in the previous section in several locations, which differed in their depth

structure. We reasoned that difference functions should be steeper in a scene containing large,

close and high-contrast objects, compared to an open space, since for a given displacement,

motion parallax should generate larger differences in images containing close objects. The

resulting two-dimensional difference functions are shown in Fig. 5 for reference images taken

close to the ground in four locations: The scene in Fig. 5a contains gantry contours and the brick

wall of a barbecue area, Fig. 5b was recorded within a small stand of trees, Fig. 5c at the edge of

this stand of trees, and Fig. 5d in an open area approximately 10 m away from the trees. Note

that gantry contours loom large in the images, especially close to the trolley (at y = -0.5) and that

masking them as they appear in these positions mimics the effect of removing close objects from

a scene.

As expected, the gradient of the difference function is steeper in confined spaces compared

to an open area with objects such as trees more than 10 m away, indicating that for a given

displacement, image differences are proportional to the distance of objects in a scene. The
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strange shape of the difference function we recorded in open terrain is a case in point (Fig. 5d):

the function is shallower and rises to a lower plateau value, compared to the one shown in Fig.

5a, but it actually appears to be a combination of a very steep narrow and a shallow broad

profile. As we show below, this is a consequence of the fact that the depth structure of the scene

is not uniform with very close and very distant contours dominating the image.

This fundamental constraint of view-based navigation can be documented in three ways. We

first introduced a large conspicuous landmark in an area where a difference function had been

recorded previously. The results of this experiment are shown in Fig. 6a and b. The difference

function without the landmark (Fig. 6a) is indeed shallower than in the presence of a landmark

(Fig. 6b), although the introduced object covers only a small part of the image. The landmark has

a surprising ‘range of influence’ on the difference function. In its presence, image differences are

still elevated at 1 m distance from the reference position (Fig. 6b) compared to the scene without

landmark.

We secondly analysed the contributions of close and distant objects to image differences in

the same scene, by masking different parts of the image before calculating the difference

function. The results are shown in Fig. 6c and d for the scene we have already encountered in

Fig. 5d. We masked those parts of the images, which either contain features above the horizon

(Fig. 6c), or features on the ground below the horizon (Fig. 6d). Close features on the ground

clearly generate a steeper, narrower difference function, which rises to a flat plateau, compared

to more distant features above the horizon, which generate a wide, shallow function.  

In a third experiment we moved the imaging device inside a 20 cm wide and 20 cm high

tunnel, the walls of which were lined with a random dot pattern. The elements of the pattern

were 1 cm squares. Tunnels of this kind have been extensively used to study honeybee
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navigation, in particular visual odometry, whereby the random dot patterns serve the function to

provide the bees with optic flow information, but no information on location along the tunnel

(see Ref. 19 for a review). The difference functions in this spatially restricted environment are

very narrow and appear to be determined by the spatial frequency of the pattern lining the walls

of the tunnel (Fig. 7a), as can be demonstrated by blending out the distant contours outside the

tunnel (Fig. 7b) or the close ones offered by the tunnel walls (Fig. 7c). The distant objects above

the tunnel contribute small image differences for a given displacement and thus on their own

generate a shallow difference function. Note that since we calculate r.m.s. pixel differences,

distant and close objects determine the shape of the difference functions, not in a purely additive

manner, but depending on the size and the contrast of the image region they occupy.

The shape of translational and rotational difference functions

As we have seen, the detailed shape of difference functions is influenced by the spatial

layout of a scene. Another way of showing how the depth structure of the world around a

specific location influences the shape of the difference function is to compare the difference

functions generated by a translational displacement of the recording device (translational

difference functions) with those generated by a pure rotation around the yaw axis (rotational

difference functions). The rationale for this procedure is as follows. The differences between

images taken at two neighbouring locations in space are caused partly by parallax and occlusion,

i.e. by the differential displacement of contours depending on their distance from the camera.

Translational difference functions should therefore be determined by the spatial frequency

content of the scene, the distance of objects, their contrast and their location in the ‘visual field’.

When images are rotated relative to the reference image, all objects will contribute to the r.m.s.
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pixel differences depending on their angular size, but regardless of their distance from the

imaging system and of their location in the ‘visual field’. A distant mountain, for instance, will

not change its position in images taken at locations one meter apart and thus will contribute

nothing or only very small values to the overall image difference. An angular displacement of 10

degrees, however, will shift its image position by the same amount as those of any other object in

the scene. Rotational difference functions should therefore be determined only by the spatial

frequency content and the contrast of a scene. For a given scene, rotational difference functions

should be deeper, with higher plateau values than translational difference functions. Although in

a strict sense, rotational and translational difference functions cannot be directly compared, one

of their properties, the ratio between the plateau values they can reach to their minimum, or their

depth, is functionally significant in the context of view-based homing.  

We explored the properties of rotational difference functions in several ways. We first

compared the rotational functions at different locations of a three-dimensional grid with the

image taken at each of these locations serving as reference (Fig. 8a and b). Note that to generate

these rotational difference functions we applied rotationally symmetrical circular masks to only

remove the image regions outside the reflecting cone. Rotational difference functions are indeed

much deeper than the translational ones we have seen before for the same scene (see Fig. 5c).

Their shape is very similar for each of the 10 locations shown, their depth, however, increases

when comparing locations close to the ground (Fig. 8b) with those at the top of the grid,

approximately 1 m off the ground (Fig. 8a). 

We next used the image at the centre of the bottom plane as a reference image and

calculated the difference functions it produced when subtracted from the rotated images at nine

different locations around the cube (Fig. 8c and d). The rotational difference functions at these



15

locations are now shallower and the minimum is different from zero, corresponding to the value

of the translational difference function at the respective location. The finding that the difference

functions in so widely separated locations contain robust information on the orientation of a

snapshot, was unexpected. The distances of corner locations on the bottom plane from the centre

reference location were 0.7 m, and the corner locations on the top plane were 1.22 m away from

the centre reference location. An animal sensitive to image differences could minimize these

differences first by yaw rotations at any distance from the goal and thus align itself with the

compass bearing it had during the acquisition of a snapshot. It could then pinpoint the goal by

finding the minimum of the translational difference function using translational movements only. 

Rotational difference functions are invariant against the depth structure of the environment

they are determined in. Fig. 9 shows the shape of the rotational difference function in the sparse

scene of a tropical mudflat. Although the function is slightly steeper than the one we recorded in

a cluttered terrestrial scene (cf. Fig. 8), its shape and plateau values are quite similar and

apparently not significantly influenced by the part of the scene contributing to it. However, the

rotational difference function of the image of the celestial hemisphere (Fig. 9c) levels out at

smaller angles of rotation to lower plateau values, compared to the difference functions for the

whole image (Fig. 9a), or that for the part imaging the ground (Fig. 9b), suggesting that the

spatial frequency distribution affects the shape of these functions.

The dependence of difference functions on illumination conditions and environmental motion

It is intuitively clear that the simple measure of r.m.s. pixel differences between images is

subject to large variations due to changes in illumination, caused at different time-scales by the
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movement of the sun and of clouds, and by the movement of wind-driven vegetation and its

shadows. We call these movements environmental motion, because they are likely to generate

responses in biological motion detectors which are unrelated to an animal’s own movements and

those of other creatures21. We attempted to analyse the effects of changes in the direction of

illumination and the concomitant changes in the image positions of shadow contours and of

specular reflections, first by recording a two-dimensional grid of images at the same location at

about hourly intervals throughout the day on a cloudless and on an overcast day. The recording

site was located at the edge of a small forest and was subject to large variations in shadow

contours, but also in environmental motion generated by wind driven vegetation from branches

overhanging the area.

These long-term recordings illustrate that difference functions can be both extremely

volatile, but also quite stable over time (Fig. 10). The functions shown in Fig. 10 were calculated

relative to the reference image recorded at the beginning of the experiment at the centre of the

grid (at 13:00 on the first, clear day and at 13:44 on the second, overcast day). Although the

shape of the difference function at this location can break down completely at certain times of

day, in the sense that the function ceases to be cusped and to have a minimum at the reference

position, it can also recover (left column Fig. 10; compare the functions recorded at 14:04, 15:02

and 16:02). Depending on illumination conditions, difference functions thus can retain their basic

properties over quite long periods of time. On a partially overcast day, for instance, the

difference function at the same location experiences a ‘DC-shift’, over a period of some hours, it

also becomes more corrugated and shallower between 14:00 and 16:00, but generally maintains

its overall shape (Fig. 10 right column). Most of these ‘instabilities’ arise from rapid changes in

illumination caused by cloud movements covering and uncovering the sun, and by wind-driven
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vegetation having a direct effect on the scene and an indirect one through changes in shadow

contours. How stable a difference function can be over time, is shown in Fig. 11 for an open

location on a calm, clear, cloudless day. Fig. 11 also allows a comparison to be made between

the shape of difference functions as they are determined at different times of day with the

reference image recorded at the same time (right panels in Fig. 11) or at the beginning of the

experiment (left panels in Fig. 11). 

To investigate the long-term and short-term properties of difference functions, we recorded

images at the same location in space intermittently over several hours. We then determined the

image differences for this location at 10-second intervals in 10-minute blocks with the image

recorded at the beginning serving as reference. As can be seen from a ten-minute record in

Fig. 12a, temporal variation of illumination due to moving clouds causes large and rapid

variations in image differences on the time-scale of minutes. These rapid variations are

accompanied by a slow increase in image differences over time, suggesting that changes in the

direction of illumination caused by the movement of the sun, also contribute to the temporal

variation of image differences. At this sampling rate, temporal variations are very similar above

and below the horizon (see insets Fig. 12a). These different time-courses of variations in image

differences can be more clearly seen in recordings of image series, which we interspersed with

the recordings of difference functions (shown in Fig. 10) on a clear and on a partially overcast

day (Fig. 12b and c). The ‘diurnal’ component was particularly pronounced on the cloudless day

(Fig. 12b), with image differences increasing from 13:00 to about 15:00 for a reference image

recorded at 13:14, and then decreasing again later in the afternoon. We recorded a similar pattern

of slow ‘diurnal’ changes and rapid fluctuations of image differences, that is of scene similarity,

on the second, overcast day (Fig. 12c), but the slow component was much weaker, presumably
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because the scene was less affected by the changes in direction of illumination due to the

movement of the sun. Shadow contours are either absent or reduced in contrast when the day is

overcast. It is more difficult to identify the causes of rapid fluctuations in scene similarity. Cloud

movements have clearly the largest effect (see Fig. 12a), but how much wind-driven vegetation

and the shadow movements it produces contribute to image differences can only be quantified at

higher temporal resolution of scene variation in different parts of the image. 

Homing by gradient descent

Are the difference functions we measured in outdoor scenes useful for navigation? Their

cusped shape and their smoothness suggest that an animal, which is sensitive to the differences

of views relative to a remembered one could in principle pinpoint a reference location by moving

in such a way that image differences are minimized. 

To investigate whether image differences are a useful means of guidance, we implemented

two simple gradient descent algorithms on our robotic gantry. Both algorithms move the imaging

device to the centre of the active space of the robotic gantry and acquire a reference image. The

imaging device is then moved in an arbitrary direction and distance away from that position, and

its movements are subsequently controlled by the image differences relative to the reference

image. For technical reasons, we used images with constant orientation throughout in these

experiments and calculated the mean squared (m.s.) pixel differences over whole, unmasked

images, but excluded image regions outside the reflective surface with a physical mask made out

of black cardboard. In one of the gradient descent methods, called ‘RunDown’, which is a form

of the Gauss-Seidel strategy, the gantry is instructed to start moving in one direction until image

differences increase. As soon as this happens, movement direction is changed by 90o and the new
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course is followed until image differences increase again. In the second algorithm, ‘Triangular’,

a version of Evolutionary Operation”22 the imaging device is moved to three positions at the

corners of a triangle to acquire images (for two-dimensional gradient descents) or to four

positions at the vertices of a small tetrahedron (for three-dimensional gradient descents). Images

taken at the endpoints of these search positions are subtracted from the reference image, thus

generating three or four m.s. difference values that are then compared. The result is used to

generate a vector pointing in the direction of the maximal gradient. The imaging device is then

moved along this vector to a new location where the sampling is repeated. 

In many situations, both procedures were quite successful in returning the imaging device to

the location at which the reference image was recorded, by moving down the gradient of the

difference function to reach its minimum. Fig. 13 shows the results of an experiment for which

we admittedly chose ideal conditions: the experiment was run on a cloudless, clear day at an

open site, well away from tall vegetation. The 2D difference function for the site is shown in

Fig. 13a. Over a period of 2 hours we conducted 40 homing runs, half of them with ‘RunDown’

and half with ‘Triangular’, in a randomised sequence, always starting with a reference image at

the centre of a plane which had an area of 1 m2 and was approximately 20 cm above ground. We

stopped a run either after 3 minutes or after the imaging device had reached to within 5 cm of the

reference location in the centre. Both algorithms successfully returned the imaging device to the

reference locations in 18 out of 20 runs, as is documented by the paths of the imaging device in

Fig. 13b and c, and by the plots of m.s. pixel differences over the distance from the reference

location in Fig. 13d and e. It is interesting to note, that it would in principle also be possible to

terminate homing runs by using a m.s. difference cut-off directly. On this occasion, for instance,
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terminating the runs when image differences had reached a value of 100, would in most cases

have brought the imaging device to within 10 cm of the goal.

In the course of this and other experiments, which took place at other sites, we made the

remarkable observation that these primitive gradient descent schemes can be quite robust and

successful even when faced with changes in illumination. The homing runs in Fig. 14 show

several examples of this achievement for both algorithms. In hindsight it becomes clear why this

is so: when illumination changes, scene similarity as measured by m.s. pixel difference relative

to a reference image taken at a different state of illumination decreases dramatically (see for

instance black curve in Fig. 14b and d). However, in this situation, a gradient descent algorithm,

which compares image differences between successive time steps, as the ones we employed do,

will not be able to escape the location it has already reached, because wherever it moves, image

differences will not become systematically smaller (e.g. Fig. 14a and c). Transient changes in

illumination, therefore, will only slow down the progress of gradient descent, but not destabilise

it. This can be seen in two of the examples in Fig. 14c and d, where the imaging device had not

reached the goal location when the change in illumination occurred. The algorithm ‘hunts’

around the location where the change in illumination occurred, but does not break out. It

continues its descent, when illumination has returned to the situation prevalent at the time the

reference image was recorded. However, gradient descent on raw pixel differences will most

certainly fail, whenever the reference image is acquired at a rare state of general illumination.

In spite of the obvious limitations of simple gradient descent strategies when faced with

variable illumination, this result tells us, that in principle, panoramic image differences can be

used by an agent, which is sensitive to them, to relocate a goal position in complex and visually

cluttered outdoor scenes.   
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Discussion

We have documented that the simple measure of r.m.s. pixel differences between panoramic

images can be a reliable cue to location in outdoor scenes. This is so, because image differences

change in a regular and smooth fashion with distance from a reference position, meaning that

they are correlated with position in space. We have also shown that image differences can be

used to recover a reference orientation, even if the observer is some distance away from the

location at which the reference image was acquired. We finally demonstrated that the global and

simple measure of panoramic image difference does supply enough information to re-locate a

position in space by means of simple gradient descent algorithms. Using panoramic snapshots for

homing thus does seem to be an option for animals under the complex natural conditions they are

operating in.

However, at any one location, natural scenes also change with time because the direction of

illumination changes slowly with the movement of the sun and because environmental motion

generated by wind driven vegetation, the movement of shadows and the movement of clouds,

alter their appearance on a short time-scale. These sources of temporal variation can override the

spatial correlation of image differences, degrading the cusped shape of difference functions to

such an extent, that they become useless for view-based homing. 

We discuss our results in three steps: We ask what determines the size and shape of

difference functions, what strategies animals or robots could employ to cope with the temporal

variations of natural scenes, and what relevance our results have for the study of view-based

homing in animals and robots.
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What determines the shape, size and depth of difference functions?

Our comparison between difference functions in scenes with different depth structure

suggests that the shape and depth of these functions depend on the spatial frequency content of

images, on the degree of occlusion and on the depth structure of the scenes they are recorded in

(see also Refs. 7,8, 16-19). Our evidence for this conjecture is at this stage still qualitative, but

the following considerations do give it some weight. Let us assume that objects at different

distances contribute about equal amount of spatial frequencies and angular sizes to the image

taken at a reference position. As the imaging device moves away from the reference position,

those image regions, which view nearby objects, will generate the largest image differences.

Their contribution to the r.m.s. pixel difference calculated over the whole panoramic view will

saturate, however, at some value proportional to the relative size of the image region they occupy

in the reference image, when each pixel has been replaced by a background pixel due to motion

parallax or through occlusion (see Fig. 6d and Fig. 7). The r.m.s. pixel differences are thus a

complex function of the distance distribution of objects in the world and of their angular size in

the image. For a given displacement, objects generate fewer and fewer image differences the

further away they are. The contributions to the difference image of objects in each depth plane

(normalised to the displacement distance) will level out at some maximal difference value until a

plateau is reached when most of the pixels differ from the equivalent ones in the reference

image. During pure translation, the plateau value of the difference function is determined by the

relative contribution of image regions occupied by distant objects, which stay the same in all

images, and those that are occupied by nearby objects. The comparison between translational and

rotational difference functions is interesting in this respect: since image differences generated by

rotation are independent of the depth structure of a scene, they plateau at much higher values
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compared to image differences generated by translation. The reason being that in rotational

difference functions, all image regions contribute equally to the r.m.s. pixel difference,

independent of the distance of objects in the scene. The comparison between rotational and

translational difference functions also tells us, that their smoothness is most likely caused by the

‘scene density’ outdoors, in terms of the spatial frequency distribution, the broad distribution of

contrast, the wide distribution of object distances and of angular sizes, and by the absence of

sharp vertical contours. Compared with indoor scenes, occluding surfaces which would cause

abrupt changes in translational, but not in rotational difference functions, do not appear to play a

major role in outdoor scenes.

The dependence of image differences on the depth structure of a scene, allows us to predict

that the pixel differences contributing to a given difference function are not distributed equally

across the ‘visual field’. Much like the image velocity vectors in the optic flow field experienced

by a moving optical system, the image differences generated by a displacement, depend on the

direction of translation, with largest differences occurring in directions of view perpendicular to

the heading direction8,9. We would also predict that, if the depth, shape and smoothness of

difference functions depend on the spatial frequency content of a scene, low-pass filtering the

images should make the functions shallower and smoother. The retinal topography of panoramic

image differences and the effect of resolution on difference functions, especially non-uniform

resolution across the visual field, are thus interesting topics for further investigation. 

The temporal stability of difference functions

We have shown that difference functions can be quite stable over time, but that changes in

the direction of illumination and environmental motion often seriously degrade their shape. How
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could animals relying on view-based homing cope with these scene variations? Visual systems

are known to employ a variety of strategies to alleviate the effects of changes in illumination

ranging from receptor adaptation, contrast normalisation, to motion and colour processing.

Compared to our description of difference functions on the level of raw pixel values, any

additional processing will make difference functions more immune to changes in illumination

and as a consequence, will make view-based navigation more robust. The contribution further

processing can make to scene stability and view-based homing can now be systematically

explored. It would be quite simple, for instance, to compare difference functions and gradient

descent performance with the automatic gain control of the camera switched on or off.

Experiments could also be carried out off-line, either by normalising images to their average

brightness or by normalising contrast over the image, before calculating r.m.s. pixel differences.

Since gradient descent based on global image differences is fairly unaffected by changes in

illumination, some relatively simple pre-processing of images may be all that is required to make

view-based homing immune to the temporal variations in natural scenes. It is more difficult to

see how insects or robots might cope with the more rapid temporal variations, which are

generated by wind-driven vegetation and the movement of shadows. One way to reduce the

contribution of shadows to image differences may be to remove shadows by colour processing

the images before comparing them. The visual effects of wind-induced motion could be reduced,

by spatial and temporal low-pass filtering of images. We are currently developing ways to

separate the effects of environmental motion from those generated by changes in illumination,

which will enable us to investigate these strategies in detail.
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View-based homing

In surveying the machine vision and robotics literature, it was surprising for us to notice that

image differences, as a simple cue for position in space, have to date apparently not been found

useful for view-based homing, although they have been shown to provide robust information on

egomotion7,8,16,19 and range17,18. We can see three reasons for this neglect: first, in conventional

robotics applications, image differences have probably been discarded as potential cues for long

range navigation, because the indoor environments in which robots are normally developed and

tested are characterised by repetitive spatial arrangements of very self-similar structures and

sharp edges. The hallways of robotics laboratories come to mind, in which the only dominant

landmarks are doors, doorways, desks, and chairs. Their similarities in 2D images taken at

different locations must be a prime source of local minima, which are difficult to overcome. In

addition, sharp, occluding edges may limit the range over which image differences increase

monotonically. A last, and probably more crucial reason for rejecting image differences and

gradient descent as potent navigational aids for pinpointing goals is the fact that they do not

enable a navigating agent to compute its position relative to a goal in absolute coordinates and

even in relative coordinates it cannot determine its position without moving and comparing8.

This however is exactly what insects appear to do.

Flying insects do not just take a snapshot when they leave a location they wish to return to.

Instead, they go through an elaborate sequence of behaviour, called an orientation or learning

flight, in the course of which they turn towards the goal and move away from it backwards, in a

series of increasing arcs, while pivoting about the goal location23-25 (for reviews see Refs.

1,2,14,26,27). There are two likely reasons why insects perform learning flights: one is the need

to segregate foreground from background contours and to identify close three-dimensional
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objects by means of motion parallax. This would allow insects to filter out shadow contours, to

parse images and to restrict the reference image and the subsequent matching process to motion

defined contours23. Secondly, departing insects may need to measure how reliable the currently

acquired visual representation is for the subsequent homing task in real-time during the learning

process. Already during the learning phase, therefore, insects move and have ample opportunity

to compare what they have already learnt to what they are currently experiencing. When they

subsequently return to the goal, insects also do not fly in a straight path. Although their mean

orientation correlates well with their orientation during learning1,25,28, they approach the goal not

directly, but in a series of sideways movements. In the presence of a distinct landmark close to

the goal, they may approach this landmark first, thus using it as a beacon29 and subsequently turn

and move to approach the goal position in the orientation they had during the learning phase on

departure.

Insects are also known to be able to extract features like the average orientation of contours

in a pattern30-32, apart from apparently memorising snapshot-like images12,33,34. In the context of

pattern recognition, at least, we note a lively recent discussion about whether image matching

and/or feature extraction best explain the feats of pattern recognition in flies and bees30-32,35-39.

The question of interest in the present context of view-based navigation, however, is whether

general features, such as the distribution of contour orientations40, or the spatial frequency

content of natural scenes41,42 carry reliable and robust information, not on the identity of a

pattern to be recognised, but on the identity of a location in space. We believe that such general

features are unlikely to be useful in homing tasks. For instance, the second-order statistics of

natural scenes are so similar across different viewpoints and different habitats41, that they cannot

serve as a signature for individual locations in the world.
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In spite of the fact that the simple measure of panoramic image differences provides a robust

cue to location in space, the behaviour of homing insects tells us that animals do also attend to

individual objects on their own. Landmarks are used in at least three different ways, as beacons,

as route landmarks, and as part of a scene specifying a location, whereby a small displacement of

a landmark can have marked effects on the path an insect follows, or on the location where it

searches for a goal (for review see Refs. 1, 2). Why do insects behave like this, although we have

shown here that overall image differences would in principle be sufficient to guide them back to

a goal position? We can think of a number of reasons why landmarks as distinct objects may

offer additional and crucial information for navigation: landmarks may help in navigating open

terrain where image differences are small and probably fairly constant over large distances

(beacons, route landmarks). Landmarks are also important for accurate pinpointing, especially

with relation to the goal direction from an object: for instance, except at very close range, it may

be impossible to decide by determining panoramic image differences alone, on which side of a

small landmark a nest entrance lies. Recognition of landmarks and their use as a reference may

in addition help to alleviate the problems of shadows and varying illumination in outdoor scenes.

So far, the most parsimonious model for view-based homing is probably the average

landmark vector scheme, proposed by Lambrinos et al.10 and Möller11. The model is more

parsimonious compared to conventional image matching schemes, because it requires only one

vector to be stored, rather than an image or its derivatives. In this respect, the average landmark

vector model resembles the simple measure of global image differences, which we investigated

here. It remains to be shown, however, that the good performance of the average landmark vector

scheme in the sparse and high-contrast landmark environments, in which it was tested, is

predictive of its performance under real-life conditions. It is not clear to us, for instance, how to
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choose appropriate parts of a complex natural scene for generating the component vectors

needed in the scheme, both during acquisition and during homing. This task seems especially

difficult in the three-dimensionally cluttered worlds through which animals navigate.

We used a gradient descent scheme based on the m.s. pixel differences between panoramic

snapshots to test whether the difference gradients towards a goal location provide enough

information for homing. We demonstrate that this is indeed the case, at least for snapshots with

constant orientation, which raises the question how biologically plausible gradient descent

methods are. The problem can be broken down into two levels. The first is behavioural, and the

question is how animals may sample the gradient of image differences before deciding on their

next move. One crucial issue that we did not explore in our gradient descent experiments, is the

need for correcting for orientation errors before using image differences as a guide for

homing9,12. As we mentioned before, the shape and depth of rotational and translational

difference functions suggest, that flying insects could, in addition to using celestial or magnetic

compass cues to control orientation, minimise image differences first by rotating and then by

using sideway movements to navigate towards the minimum of the translational difference

function. The pivoting and sideways flight characteristics of homing insects, both during learning

and during the approach to a goal, may be reflecting such a strategy26,27,43,44. The second level

involves neural processing and the question here is how a nervous system may determine and

store image differences on a pixel-by-pixel basis32. It is not clear, for instance, whether the

overall pixel difference between images is a computation more easily performed by the brain of

an insect than feature difference or object recognition. We know too little about the constraints

operating on insect neural networks involved in processing and storing visual information, to be

able to assess whether a certain operation is ‘simple’ or not. Parsing the retinal image through
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edge detection, motion segmentation or colour processing, is likely to aid processing, retention

and recall of visual information. However, it remains to be seen, whether reduction of the

information potentially available in the retinal image improves homing performance and results

in a representation that is easier to store. 
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Figure legends

Fig. 1 (a) The robotic gantry in its natural habitat. The panoramic imaging device, consisting of

a video camera and a reflective surface can be seen at the end of the horizontal y-axis arm at the

far right of the picture. (b) Close-up of the panoramic imaging surface and the camera lens. (c)

Panoramic image after a circular mask was applied to the original video image. (d) Panoramic

image after applying an additional mask blocking the main gantry and the image of the camera

and the camera lens. (e) An unwarped version of the panoramic image shown in c, after

removing the image regions containing the camera lens.

Fig. 2 The difference function in a densely vegetated area. (a) The position of a three-

dimensional grid of image positions and the orientation of gantry axes in the scene. (b) The two-

dimensional grid of 7x7 spatial positions at which panoramic images were taken for each

horizontal plane of the three-dimensional grid shown in a. The recording sequence starts at x = -

0.3m, y = -0.3m and ends at x = 0.3m, y = 0.3m. Coordinates are given relative to the reference

location at x = 0, y = 0. Transects are labelled with different symbols (see d). (c) The 2D

difference function for the lowest plane of the three-dimensional grid. The r.m.s. pixel

differences are shown along the z-axis for each image position in the 7x7 grid, as compared with

the image taken at the reference position in the centre. (d) Transects along the x- and y-direction

(solid dots) and along the two diagonals (open dots) through the 2D difference function shown in

c. Directions of transects and their symbols are indicated in b. 

Fig. 3 The vertical spatial extent of difference functions and their dependence on reference

image location. (a) Transects through the 2D difference functions at z = 0.4m, z = 0.5m and z =
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0.6m above ground for reference images RI at the centre of the same planes of the 7x7x7 three-

dimensional grid shown in Fig. 2a. See inset for definition of symbols. Otherwise conventions as

in Fig. 2d. (b) The difference functions for the same planes (at z = 0.4m, z = 0.5m and z = 0.6m),

calculated relative to the reference image at the centre of the bottom plane (at x = 0m, y = 0m, z

= 0.3m; see diagram at bottom centre). 

Fig. 4 The horizontal extent of difference functions. The difference functions for two locations

in an open area at the edge of a stand of tall eucalyptus trees. The difference functions were

determined over an area of 1m x 3m for two different reference locations (top and centre) by

moving the gantry one metre at a time along the x-direction. Images were taken approximately

20 cm above ground and the grid spacing was 10 cm. Transects along the x-axis at y = 0 are

shown in the bottom graph. Otherwise conventions as before. 

Fig. 5 Transects through the 2D difference functions in four outdoor scenes with different depth

structure. Conventions as before. Images were recorded at 10 cm intervals in a 11x11 grid

approximately 20 cm above ground (a) in a location close to the brick wall of a barbecue area,

(b) within a small stand of trees, (c) at the edge of the small stand of trees and (d) approximately

10 m away from the trees in an open area. The oval shape at the right masks one of the trolley

wheels which looms large in the image at position x = 0.5, y = -0.5, z = 0. 

Fig. 6 The influence of depth structure on the shape and extent of difference functions. The

difference functions for panoramic images before (a) and after (b) a cylindrical landmark had

been placed a few centimetres beyond position x = -0.5m, y = 0m (marked by dot in lower
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diagrams). The masked panoramic images of the scene are shown on top and the respective 2D

difference functions with the reference image at x = 0m, y = 0m below. Otherwise conventions

as before. (c) and (d) Difference functions for the location shown in Fig. 5d, but with different

image regions masked. (c) Image region viewing exclusively objects above the horizon;  (d)

image region viewing the ground. Transects through the 2D difference functions are shown

below.  Conventions as before (see inset).

Fig. 7 The influence of depth structure on the extent and depth of difference functions. The

graph shows the image differences along a 1 m stretch of narrow tunnel, the walls of which were

lined with a random dot pattern with 1 cm element size. The tunnel was 20 cm wide and 20 cm

high. To determine the contributions of different image regions, differences are shown for the

full scene (a, black line), for the part of the images viewing the tunnel only (b, dark grey line)

and for the part of the images viewing the scene beyond the tunnel (c, light grey line). The

reference image was recorded at a position 50 cm along the tunnel. Otherwise conventions as

before. 

Fig. 8 The properties of rotational difference functions. Images were recorded every 10 cm in a

11x11x11 grid at the edge of a small stand of trees. Image differences were calculated for 5

locations each on the bottom and the top plane of the three-dimensional grid (see inset in the

centre) for different degrees of rotation of the same images ((a) and (b)) or between a reference

image at the centre of the bottom plane and rotated images at all other locations ((c) and (d)).

Note the difference in scale compared to the translational difference functions shown in previous
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figures. Images were rotated in 9 degree steps after a circular mask had been applied to remove

image regions outside the reflective cone.

Fig. 9 Rotational difference functions in a flat world. A panoramic image taken low to the

ground in a tropical mudflat was used to analyse the dependence of rotational difference

functions on the spatial structure of a scene. The three curves were calculated after masking

different parts of the image with circular masks (see insets). Images were rotated in steps of 9

degrees.  

Fig. 10   The temporal stability of difference functions. Images were recorded every 10 cm in a

11x11 grid approximately 20 cm above ground repeatedly over 3 hours on two consecutive days

in the same location at the edge of a small stand of trees. Recording the 121 images in one grid

plane took about 5 minutes. Transects in the left column are through 2D difference functions

recorded on a clear and windy day in the same location, the first one at 13:00 hrs, the last one at

16:02 hrs. The reference image used throughout was the one recorded at the centre of the grid at

13:00 hrs. The aperture setting of the camera lens had to be adjusted to prevent camera saturation

and is shown in each panel together with the time of recording. The right column shows transects

through 2D difference functions recorded at the same location on the following day, which was

predominantly overcast and windy. The reference image used to calculate the difference

functions was recorded at 13:44 hrs at the centre of the grid. The recording area lies at the north-

west edge of the small forest where the shadows from overhanging branches can change the

scene significantly depending on the wind and the movements of clouds and the sun (see Fig. 12

below). Conventions as before (see inset).
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Fig. 11   The temporal stability of difference functions: calm, clear, cloudless day in an open

area. Images were recorded with 10 cm spacing in a 11x11 grid approximately 20 cm above

ground on a calm, mostly cloudless day at an open site over 10 m away from the edge of a small

forest. The transects through the 2D difference functions on the left were calculated with images

recorded at different times of the day, using the reference image recorded at the centre of the grid

at 13:10 hrs. Functions on the right were calculated with the reference image recorded at the

same time of the day. All other conventions as before (see inset).

Fig. 12  Short and long-term changes of image differences in outdoor scenes. Images were

recorded at the same location with a sampling rate of 6 per minute. Image differences were

calculated with the image at t = 0 as a reference. (a) The trace shows the r.m.s. image differences

over time, separately for the whole image (dark grey, see insets) and for image regions viewing

the world below (black) and above the horizon (light grey). The large variations are due to the

movements of clouds, as can be seen by the sample images on top, which were recorded at 2

minute intervals. (b) Image differences at the same location over a period of three hours (same

scene as Fig. 10, left panels). Images were recorded at 10-second intervals intermittently over 10

minute periods. Different grey-levels indicate the aperture settings of the camera lens during the

recording. The reference image was recorded at 13:14 hrs (t = 0). Dots on the x-axis mark the

times at which 2D difference functions were recorded (see Fig. 10). The rapid variations in

image differences are probably due to the movement of clouds, wind-driven vegetation and

shadows, the slow change is due to the change in the direction of illumination. (c) Long and

short term variation of image differences at the same location on a windy, overcast day (same
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scene as in Fig. 10, right panels). The reference image was recorded at 13:50 hrs (t = 0). Note the

large variations due to environmental motion and clouds and the comparatively minor change in

image differences due to changes in the direction of illumination. Other conventions as before.

Fig. 13   Homing by gradient descent: Comparison of two algorithms which were tested in a

plane approximately 20 cm above ground in an open area on a calm, clear day. For details see

text. The difference function relative to the reference image at the centre of this location is

shown in (a). The performance of the two algorithms is shown in (b) and (c): in “RunDown” the

gantry moved in one direction as long as mean squared (m.s.) pixel differences became smaller.

If image differences increased, the direction of movement was changed by 90 degrees. In the

second algorithm, “Triangular”, the gantry determines m.s. pixel differences relative to the

reference image at three positions at the corners of a small triangle, and subsequently moves in

the direction of the minimum. We tested the performance in a randomised sequence of 40 runs.

(b) and (c) show the two-dimensional paths with starting positions marked by dots. (d) and (e)

show the m.s. pixel differences plotted over the distance from the reference location. (b) The

results of 18 gradient descents using the ‘RunDown’ algorithm (two out of the 20 runs are shown

on their own in Fig. 14. Note that only two of the runs do not reach the goal (thick lines). (c) The

results of 18 gradient descents using the ‘Triangular’ algorithm (two of the 20 runs are shown

on their own in Fig. 14). Otherwise conventions as in (b). 

Fig 14   Homing by gradient descent: Effects of changes in illumination. The figure shows

examples in which illumination changed during the execution of a gradient descent run. Both the

“RunDown” and the “Triangular” algorithms appear to be immune to and able to recover from



43

changes in illumination since the large image differences they cause also arrest the gradient

descent schemes at the position they currently occupy. Return to normal conditions allows the

schemes to progress to the goal position. All traces except the light-grey one are from the

experimental session shown in detail in Fig. 13. Other conventions as before.



a

b

e

c

d

Fig. 1
Zeil Hofmann Chahl

Fig. 1 (a) The robotic gantry in its natural habitat. The panoramic imaging device, consisting of a video camera and a 
reflective surface can be seen at the end of the horizontal y-axis arm at the far right of the picture. (b) Close-up of the 
panoramic imaging surface and the camera lens. (c) Panoramic image after a circular mask was applied to the original video 
image. (d) Panoramic image after applying an additional mask blocking the main gantry and the image of the camera and the 
camera lens. (e) An unwarped version of the panoramic image shown in c, after removing the image regions containing the 
camera lens.
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